Respuesta :

Answer:

A

C

D

Step-by-step explanation:

Given in the question an expression

[tex]x^{\frac{3}{5}}[/tex]

We know that

[tex]n^{\frac{x}{y}} = \sqrt[y]{n^{x}}[/tex]

here x = 3

        y = 5

so

[tex]n^{\frac{3}{5}}=\sqrt[5]{n^{3} }[/tex]

When exponent power rule is applied we can say that

[tex]x^{\frac{3}{5}}=(x^{3})^{\frac{1}{5} }[/tex]

because

3/5 = 3*(1/5)

Thirdly,

[tex]\sqrt[5]{x^{3}} = (\sqrt[5]{x})^{3}[/tex]

ANSWER

The correct choices are A, C, D

EXPLANATION

The given expression is

[tex] {x}^{ \frac{3}{5} } [/tex]

Recall that,

[tex] {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } [/tex]

This implies that,

[tex]{x}^{ \frac{3}{5} } = \sqrt[5]{ {x}^{3} } [/tex]

Also,

[tex]( {a}^{m} ) ^{n} = {a}^{mn} [/tex]

[tex]{x}^{ \frac{3}{5} } =( {x}^{ 3} ) ^{ \frac{1}{5} } [/tex]

Or

[tex]{x}^{ \frac{3}{5} } = (\sqrt[5]{ {x}} ) ^{3} [/tex]

The correct choices are A, C, D