Respuesta :
Answer:
A
C
D
Step-by-step explanation:
Given in the question an expression
[tex]x^{\frac{3}{5}}[/tex]
We know that
[tex]n^{\frac{x}{y}} = \sqrt[y]{n^{x}}[/tex]
here x = 3
y = 5
so
[tex]n^{\frac{3}{5}}=\sqrt[5]{n^{3} }[/tex]
When exponent power rule is applied we can say that
[tex]x^{\frac{3}{5}}=(x^{3})^{\frac{1}{5} }[/tex]
because
3/5 = 3*(1/5)
Thirdly,
[tex]\sqrt[5]{x^{3}} = (\sqrt[5]{x})^{3}[/tex]
ANSWER
The correct choices are A, C, D
EXPLANATION
The given expression is
[tex] {x}^{ \frac{3}{5} } [/tex]
Recall that,
[tex] {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } [/tex]
This implies that,
[tex]{x}^{ \frac{3}{5} } = \sqrt[5]{ {x}^{3} } [/tex]
Also,
[tex]( {a}^{m} ) ^{n} = {a}^{mn} [/tex]
[tex]{x}^{ \frac{3}{5} } =( {x}^{ 3} ) ^{ \frac{1}{5} } [/tex]
Or
[tex]{x}^{ \frac{3}{5} } = (\sqrt[5]{ {x}} ) ^{3} [/tex]
The correct choices are A, C, D
The correct choices are A, C, D
EXPLANATION
The given expression is
[tex] {x}^{ \frac{3}{5} } [/tex]
Recall that,
[tex] {a}^{ \frac{m}{n} } = \sqrt[n]{ {a}^{m} } [/tex]
This implies that,
[tex]{x}^{ \frac{3}{5} } = \sqrt[5]{ {x}^{3} } [/tex]
Also,
[tex]( {a}^{m} ) ^{n} = {a}^{mn} [/tex]
[tex]{x}^{ \frac{3}{5} } =( {x}^{ 3} ) ^{ \frac{1}{5} } [/tex]
Or
[tex]{x}^{ \frac{3}{5} } = (\sqrt[5]{ {x}} ) ^{3} [/tex]
The correct choices are A, C, D