Answer:
Option A: P(Male or Type B) > P(Male | Type B)
Step-by-step explanation:
Total Female = 85 type A, 12 type B ⇒ 97 Female.
Total Male = 65 type A, 38 type B ⇒ 103 Male
Total type A = 65 + 85 = 150
Total type B = 12 + 38 = 50
total number of people = 97 + 103 = 200
Then the probability would be:
P(Male | Type B) = [tex]\frac{number of male in B}{total number of male}[/tex]
= [tex]\frac{38}{103}[/tex]
= 0.368
P(Male or Type B) = [tex]\frac{total number of male + (total number of people in B - total number of male in B)}{total number of male}[/tex]
= [tex]\frac{103 + (50 - 38)}{200}[/tex]
= [tex]\frac{103 + 12}{200}[/tex]
= [tex]\frac{115}{200}[/tex]
= 0.575
Hence, P(Male or Type B) > P(Male | Type B)