Respuesta :
Answer:
[tex]-\frac{4m^{4}n^{2}}{9}[/tex]
Step-by-step explanation:
The given expression is
[tex]=\frac{(2m^3n^2)^3}{-18m^5n^4}[/tex]
Use the power rule of indices on the denominator;[tex](a^m)^n=a^{mn}[/tex]
[tex]=\frac{8m^9n^6}{-18m^5n^4}[/tex]
We apply the quotient rule of indices; [tex]\frac{a^m}{a^n} =a^{m-n}[/tex]
[tex]=\frac{8m^9n^6}{-18m^5n^4}[/tex]
[tex]=-\frac{4m^{9-5}n^{6-4}}{9}[/tex]
Simplify
[tex]=-\frac{4m^{4}n^{2}}{9}[/tex]
Answer:
The correct answer is
(2m³n²)³/(-18m⁵n⁴) = - m⁴n²/9
Step-by-step explanation:
It is given an expression,
(2m³n²)³/(-18m⁵n⁴)
Points to remember
Identities
1). (xᵃ)ᵇ = xᵃᵇ
2). xᵃ/xᵇ = xᵃ⁻ᵇ
To solve the expression
(2m³n²)³/(-18m⁵n⁴) = -2m⁹n⁶/18m⁵n⁴ (Using identity 1)
= -2/18(m⁹⁻⁵n⁶⁻⁴) (Using identity 2)
= -1/9(m⁴n²)
= - m⁴n²/9
Therefore the simplified form of given expression is given by,
(2m³n²)³/(-18m⁵n⁴) = - m⁴n²/9