Respuesta :

Answer:

Step-by-step explanation:

(x-1)(x+2)/x^2(x-1)+2(x-1)

(x-1)(x+2)/(x-1)(x^2+2)

(x+2)/(x^2+2)

Answer:

[tex]\frac{(x+2)}{(x^2+2)}[/tex]

Step-by-step explanation:

[tex]\frac{x^2+x-2}{x^3-x^2+2x-2}[/tex]

To simplify the given expression , factor both numerator and denominator

Numerator : [tex]x^2+x-2[/tex]

Product is -2 and sum is +1. factors are 2 and -1

[tex]x^2+x-2=(x+2)(x-1)[/tex]

Denominator : [tex]x^3-x^2+2x-2[/tex]

Group first two terms and last two terms

Factor out GCF from each term

[tex](x^3-x^2)+(2x-2)[/tex]

[tex]x^2(x-1)+2(x-1)[/tex]

[tex](x^2+2)(x-1)[/tex]

Replace the factors in the given expression

[tex]\frac{(x+2)(x-1)}{(x^2+2)(x-1)}[/tex]

Cancel out x-1 at the top and bottom

[tex]\frac{(x+2)}{(x^2+2)}[/tex]