Respuesta :
Answer:
Step-by-step explanation:
(x-1)(x+2)/x^2(x-1)+2(x-1)
(x-1)(x+2)/(x-1)(x^2+2)
(x+2)/(x^2+2)
Answer:
[tex]\frac{(x+2)}{(x^2+2)}[/tex]
Step-by-step explanation:
[tex]\frac{x^2+x-2}{x^3-x^2+2x-2}[/tex]
To simplify the given expression , factor both numerator and denominator
Numerator : [tex]x^2+x-2[/tex]
Product is -2 and sum is +1. factors are 2 and -1
[tex]x^2+x-2=(x+2)(x-1)[/tex]
Denominator : [tex]x^3-x^2+2x-2[/tex]
Group first two terms and last two terms
Factor out GCF from each term
[tex](x^3-x^2)+(2x-2)[/tex]
[tex]x^2(x-1)+2(x-1)[/tex]
[tex](x^2+2)(x-1)[/tex]
Replace the factors in the given expression
[tex]\frac{(x+2)(x-1)}{(x^2+2)(x-1)}[/tex]
Cancel out x-1 at the top and bottom
[tex]\frac{(x+2)}{(x^2+2)}[/tex]