Respuesta :
Answer: 2.3
Step-by-step explanation:
The triangle shown in the image attached is a right triangle.
Therefore, you can calculate the missing lenght of the triangle (x), by applying the proccedure shown below:
- Apply [tex]tan\alpha=\frac{opposite}{adjacent}[/tex]
- Substitute values.
- Solve for the missing side x.
Therefore, you obtain the following result:
[tex]tan\alpha=\frac{opposite}{adjacent}\\tan(25)=\frac{x}{5}\\x=5*tan(25)\\x=2.3[/tex]
Answer:
The value of x = 2.3 units to the nearest tenth
Step-by-step explanation:
* The triangle is right angle triangle
- We can use one of the trigonometry functions to find the value of x
∵ The measure of the one of the acute angle is 25°
∵ The length of the adjacent side of the angle is 5 units
∵ The length of the opposite side of the angle is x
- because we have opposite and adjacent of the given angle
∴ We will use the tan function
∵ tanФ = opposite to Ф/adjacent to Ф
∴ tan25 = x/5 ⇒ by using cross-multiplication
∴ x = 5 × tan25 = 2.33 ≅ 2.3
∴ The value of x = 2.3 units to the nearest tenth