Respuesta :

Answer:

73.2°

Step-by-step explanation:

Use Law of Sines to solve:

(Sin 50)/20 = (Sin B)/25    

Solve for Sin B

[25(Sin 50)]/20 = Sin B

Use Sin^-1 x to solve   (sine inverse)

Sin^-1 ( [25(Sin 50)]/20 ) = B

B = 73.24685774

gmany

Answer:

73 degrees

Step-by-step explanation:

Use the sine law:

[tex]\dfrac{RQ}{\sin(\angle P)}=\dfrac{PR}{\sin(\angle Q)}[/tex]

We have

[tex]RQ=20\ in\\\\m\angle P=50^o\to\sin50^o\approx0.766\\\\PR=25\ in[/tex]

Substitute:

[tex]\dfrac{20}{0.766}=\dfrac{25}{\sin(\angle Q)}[/tex]     cross multiply

[tex]20\sin(\angle Q)=(25)(0.766)[/tex]

[tex]20\sin(\angle Q)=19.15[/tex]            divide both sides by 20

[tex]\sin(\angle Q)=0.9575\to m\angle Q\approx73^o[/tex]