Respuesta :

gmany

Answer:

61°

Step-by-step explanation:

Use the sine law:

[tex]\dfrac{MO}{\sin(\angle N)}=\dfrac{NM}{\sin(\angle O)}[/tex]

We have:

[tex]MO=18\\\\NM=6\\\\m\angle O=17^o\to\sin17^o\approx0.2924[/tex]

Substitute:

[tex]\dfrac{18}{\sin(\angle N)}=\dfrac{6}{0.2924}[/tex]         cross multiply

[tex]6\sin(\angle N)=(18)(0.2924)[/tex]

[tex]6\sin(\angle N)=5.2632[/tex]          divide both sides by 6

[tex]\sin(\angle N)=0.8772\to m\angle N\approx61^o[/tex]