Respuesta :

Answer:

The measure of the arc KW is [tex]160\°[/tex]

Step-by-step explanation:

we know that

The inscribed angle measures half that of the arc comprising

so

[tex]m<A=\frac{1}{2}(arc\ KE+arc\ EW)[/tex]

substitute the values and solve for x

[tex](x+45)\°=\frac{1}{2}(x+20+3x)\°[/tex]

[tex](2x+90)\°=(4x+20)\°[/tex]

[tex]4x-2x=90\°-20\°[/tex]

[tex]2x=70\°[/tex]

[tex]x=70\°/2=35\°[/tex]

Find the measure of the arc KW

[tex]arc\ KW=(arc\ KE+arc\ EW)=(4x+20)\°[/tex]

substitute the value of x

[tex]arc\ KW=4(35\°)+20\°=160\°[/tex]