Respuesta :

Let

[tex]\theta=\sin^{-1}\dfrac x2\implies\sin\theta=\dfrac x2[/tex]

Recall that

[tex]\cos\theta=\sqrt{1-\sin^2\theta}=\sqrt{1-\dfrac{x^2}4}[/tex]

Then

[tex]\tan\theta=\dfrac{\sin\theta}{\cos\theta}\implies\tan\left(\sin^{-1}\dfrac x2\right)=\dfrac{\frac x2}{\sqrt{1-\frac{x^2}4}}[/tex]

[tex]\implies\tan\left(\sin^{-1}\dfrac x2\right)=\dfrac x{\sqrt{4-x^2}}[/tex]