Respuesta :
Answer: option c.
Step-by-step explanation:
To solve this problem you must keep on mind the properties of logarithms:
[tex]ln(b)-ln(a)=ln(\frac{b}{a})\\\\ln(b)+ln(a)=ln(ba)\\\\a*ln(b)=ln(b)^a[/tex]
Therefore, knowing the properties, you can write the expression gven in the problem as shown below:
[tex]ln2x+2lnx-ln3y=ln2x+lnx^2-ln3y\\\\=ln(2x)(x^2)-ln3y\\\\=ln(\frac{2x^3}{3y})[/tex]
Therefore, the answer is the option c.
Answer:
C
Step-by-step explanation:
We can use 3 properties here to write this as single logarithm:
1. Log (a^b) = b Log a
2. Log x + Log y = Log (x*y)
3. Log x - Log y = Log (x/y)
We can use property #1 first to write:
[tex]ln2x+2lnx-ln3y\\=ln2x+lnx^2-ln3y[/tex]
Now we can use property #2 and property #3 to write this as single logarithm:
[tex]ln2x+lnx^2-ln3y\\=ln(\frac{(2x)(x^2)}{3y})\\=ln(\frac{2x^3}{3y})[/tex]
Answer choice C is right.