Respuesta :
Answer:
option b
-3/2
Step-by-step explanation:
Given in the question an expression
ln[tex]\frac{1}{\sqrt{e^3} }[/tex]
First apply logarithm divide rule
[tex]ln\frac{1}{\sqrt{e^3} }[/tex] = ln1 - ln√e³
ln(1) = 0
so
ln1 - ln√e³ = 0 - ln√e³
-ln√e³ = -ln(e³)^1/2
Apply logarithm power rule
- ln(e³)^1/2 = -lne[tex]^\frac{3}{2}[/tex]
-3/2ln(e)
As we know that
ln(e) = 1
so,
-3/2(1)
-3/2
Answer:
b. [tex]-\frac{3}{2}[/tex]
Step-by-step explanation:
The given logarithm is
[tex]\ln(\frac{1}{\sqrt{e^3} } )[/tex]
Use the quotient rule of logarithm; [tex]\ln(\frac{a}{b})=\ln(a)-\ln(b)[/tex]
[tex]=\ln(1)-\ln(\sqrt{e^3})[/tex]
[tex]=\ln(1)-\ln(e^{\frac{3}{2}})[/tex]
Use the power rule; [tex]\ln(a^n)=n\ln(a)[/tex]
[tex]=\ln(1)-\frac{3}{2}\ln(e)[/tex]
Recall that logarithm of 1 is zero and also logarithm of the base is 1.
[tex]=0-\frac{3}{2}(1)[/tex]
[tex]=-\frac{3}{2}[/tex]