Respuesta :

Answer:

option b

-3/2

Step-by-step explanation:

Given in the question an expression

ln[tex]\frac{1}{\sqrt{e^3} }[/tex]

First apply logarithm divide rule

[tex]ln\frac{1}{\sqrt{e^3} }[/tex] = ln1 - ln√e³

ln(1) = 0

so

ln1 - ln√e³ = 0 - ln√e³

-ln√e³ = -ln(e³)^1/2

Apply logarithm power rule

- ln(e³)^1/2 = -lne[tex]^\frac{3}{2}[/tex]

-3/2ln(e)

As we know that

ln(e) = 1

so,

-3/2(1)

-3/2

Answer:

b. [tex]-\frac{3}{2}[/tex]

Step-by-step explanation:

The given logarithm is

[tex]\ln(\frac{1}{\sqrt{e^3} } )[/tex]

Use the quotient rule of logarithm; [tex]\ln(\frac{a}{b})=\ln(a)-\ln(b)[/tex]

[tex]=\ln(1)-\ln(\sqrt{e^3})[/tex]

[tex]=\ln(1)-\ln(e^{\frac{3}{2}})[/tex]

Use the power rule; [tex]\ln(a^n)=n\ln(a)[/tex]

[tex]=\ln(1)-\frac{3}{2}\ln(e)[/tex]

Recall that logarithm of 1 is zero and also logarithm of the base is 1.

[tex]=0-\frac{3}{2}(1)[/tex]

[tex]=-\frac{3}{2}[/tex]