Respuesta :

QUESTION 1

The tangent ratio is the ratio of the length of the opposite side of the length of the adjacent side.

From ΔVWX,

[tex]\tan(X)=\frac{VW}{WX}[/tex]

From ΔYZX,

[tex]\tan(X)=\frac{YZ}{XZ}[/tex]

[tex]\therefore \tan(X)=\frac{VW}{WX}=\frac{YZ}{XZ}[/tex]

QUESTION 2

We use the tangent ratio to obtain;

[tex]\tan(V)=\frac{Opposite}{Adacent}[/tex]

[tex]\tan(V)=\frac{WX}{VW}[/tex]

QUESTION 3

From ΔVWX,

[tex]\tan(X)=\frac{VW}{WX}[/tex]

We take the inverse tangent of both sides to obtain;

[tex]X=\tan^{-1}(\frac{VW}{WX})[/tex]

[tex]\therefore \tan^{-1}(\frac{VW}{WX})=X[/tex]

QUESTION 4

From ΔVWX,

[tex]\tan(V)=\frac{WX}{VW}[/tex]

Taking the inverse tangent of both sides, we obtain;

[tex]V=\tan^{-1}(\frac{WX}{VW})[/tex]

[tex]\therefore \tan^{-1}(\frac{WX}{VW})=V[/tex]

QUESTION 5.

We know that

[tex]\tan(V)=\frac{WX}{VW}[/tex]

and

[tex]\tan(X)=\frac{VW}{WX}[/tex]

[tex](\tan X)(\tan V)=(\frac{VW}{WX})(\frac{WX}{VW}=1[/tex]

QUESTION 6.

[tex]\tan^{-1}(\frac{VW}{WX})=X[/tex]

[tex]\tan^{-1}(\frac{WX}{VW})=V[/tex]

This implies that;

[tex]\tan^{-1}(\frac{VW}{WX})+\tan^{-1}(\frac{WX}{VW})=X+V[/tex]

QUESTION 7

[tex]\tan 23\degree =0.4244[/tex]

We round to the nearest 0.01 to obtain;

[tex]\tan 23\degree =0.42[/tex]

QUESTION 8

[tex]\tan 43\degree =0.9325[/tex]

We round to the nearest 0.01 to obtain;

[tex]\tan 43\degree =0.92[/tex]

QUESTION 9

[tex]\tan ^{-1} 0.14=7.9696\degree[/tex]

We round to the nearest 0.01 to obtain.

[tex]\tan ^{-1} 0.14=7.97\degree[/tex]

QUESTION 10

[tex]\tan ^{-1} 1=45.00\degree[/tex]

QUESTION 11

[tex]\tan ^{-1} 0.14=7.97\degree[/tex]

This implies that;

[tex]\tan 7.97\degree=0.14[/tex]

QUESTION 12

[tex]\tan ^{-1} 1=45.00\degree[/tex]

This implies that;

[tex]\tan 45.00\degree=1[/tex]