Answer:
The length is [tex]8\frac{1}{4}\ ft[/tex]
Step-by-step explanation:
we know that
The area of a rectangle is equal to
[tex]A=LW[/tex]
In this problem we have
[tex]A=53\frac{5}{8}\ ft^{2}[/tex]
[tex]W=6\frac{1}{2}\ ft[/tex]
convert to an improper fraction
[tex]A=53\frac{5}{8}=\frac{53*8+5}{8}=\frac{429}{8}\ ft^{2}[/tex]
[tex]W=6\frac{1}{2}=\frac{6*2+1}{2}=\frac{13}{2}\ ft[/tex]
substitute in the formula and solve for L
[tex]\frac{429}{8}=L\frac{13}{2}[/tex]
[tex]L=\frac{429*2}{8*13}=\frac{858}{104}\ ft[/tex]
Convert to mixed number
[tex]L=\frac{858}{104}=\frac{832}{104}+\frac{26}{104}=8\frac{1}{4}\ ft[/tex]