Respuesta :

Answer:

[tex]d = \sqrt{80} = 8.94[/tex]

Step-by-step explanation:

We can find the distance using the distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We then substitute (1,7) as [tex](x_1,y_1)[/tex] and (-3,-1) as [tex](x_2,y_2)[/tex].

[tex]d=\sqrt{(-3-1)^2+(-1-7)^2} \\d=\sqrt{(-4)^2+(-8)^2} \\d=\sqrt{16+64}\\d=\sqrt{80}=8.94[/tex]

Answer with Step-by-step explanation:

The length of the line segments with end point (a,b) and (c,d) is:

[tex]\sqrt{(a-c)^2+(b-d)^2}[/tex]

Here, we have to find the length of the segment with endpoints A(1,7) and B(-3, -1)

i.e. (a,b)=(1,7)

and (c,d)=(-3,-1)

Length= [tex]\sqrt{(1+3)^2+(7+1)^2}[/tex]

          = [tex]\sqrt{4^2+8^2}[/tex]

          = [tex]\sqrt{16+64}[/tex]

          = [tex]\sqrt{80}[/tex]

Hence, Length of line segment is:

[tex]\sqrt{80}[/tex] or [tex]4\sqrt{5}[/tex]