Respuesta :
Answer:
A) 0.2253, 0.0153; B) 0.4925, 0.0017
Step-by-step explanation:
This is a binomial distribution. This is because there are only two outcomes; each trial is independent of each other; and the outcomes are independent.
This means we use the formula
[tex]_nC_r\times p^r\times (1-p)^{n-r}[/tex]
For part A,
There are 12 wolves selected; this means n = 12. We want the probability that 9 or more are male; this makes r = 9, 10, 11 or 12. We will find each probability and add them together.
p, the probability of success, is 0.6 for the first question (males). This makes 1-p = 1-0.6 = 0.4. Together this gives us
[tex]_{12}C_9(0.6)^9(0.4)^3+_{12}C_{10}(0.6)^{10}(0.4)^2+_{12}C_{11}(0.6)^{11}(0.4)^1+_{12}C_{12}(0.6)^{12}(0.4)^0\\\\=220(0.6)^9(0.4)^3+66(0.6)^{10}(0.4)^2+12(0.6)^{11}(0.4)+1(0.6)^{12}(1)\\\\\\= 0.2253[/tex]
We now want the probability that 9 or more are female; this makes r = 9, 10, 11 or 12. p is now 0.4; this makes 1-p = 1-0.4 = 0.6. This gives us
[tex]_{12}C_9(0.4)^9(0.6)^3+_{12}C_{10}(0.4)^{10}(0.6)^2+_{12}C_{11}(0.4)^{11}(0.6)^1+_{12}C_{12}(0.4)^{12}(0.6)^0\\\\=220(0.4)^9(0.6)^3+66(0.4)^{10}(0.6)^2+12(0.4)^{11}(0.6)^1+1(0.4)^{12}(1)\\\\=0.0153[/tex]
For part B,
There are again 12 wolves selected, so n = 12. We want the probability in the first question that 9 or more are male; this makes r = 9, 10, 11 or 12. The probability of success is now 0.7, so 1-p = 1-0.7 = 0.3[tex]_{12}C_9(0.7)^9(0.3)^3+_{12}C_{10}(0.7)^{10}(0.3)^2+_{12}C_{11}(0.7)^{11}(0.3)^1+_{12}C_{12}(0.7)^{12}(0.3)^0\\\\=220(0.7)^9(0.3)^3+66(0.7)^{10}(0.3)^2+12(0.7)^{11}(0.3)^1+1(0.7)^{12}(0.3)^0\\\\= 0.4925[/tex]
For the second question, the probability of success is now 0.3 and 1-p = 1-0.3 = 0.7:
[tex]220(0.3)^9(0.7)^3+66(0.3)^{10}(0.7)^2+12(0.3)^{11}(0.7)^1+1(0.3)^{12}(0.7)^0\\\\=0.0017[/tex]
Probabilities are used to determine the outcomes of events.
Before 1918,
- The probability of selecting 9 or more male wolves is 0.225
- The probability of selecting 9 or more female wolves is 0.015
- The probability of selecting lesser than 6 female wolves is 0.665
Since 1918,
- The probability of selecting 9 or more male wolves is 0.493
- The probability of selecting 9 or more female wolves is 0.002
- The probability of selecting lesser than 6 female wolves is 0.516
The question is an illustration of binomial probability, where:
[tex]\mathbf{P(x) = ^nC_x \times p^x \times (1 - p)^{n -x}}[/tex]
(a i) Probability of selecting 9 or more wolves out of 12, before 1918
The given parameters are:
[tex]\mathbf{p = 0.60}[/tex] --- the probability of selecting a male wolf
So, we have:
[tex]\mathbf{P(x \ge 9) = P(9) + P(10) + P(11) + P(12)}[/tex]
Using [tex]\mathbf{P(x) = ^nC_x \times p^x \times (1 - p)^{n -x}}[/tex], we have:
[tex]\mathbf{P(x \ge 9) = ^{12}C_9 \times 0.6^9 \times (1 - 0.6)^{12-9} +..............+^{12}C_{12} \times 0.6^{12} \times (1 - 0.6)^{12-12} }[/tex]
[tex]\mathbf{P(x \ge 9) = 220 \times 0.00064497254 +..........+1 \times 0.00217678233}[/tex]
[tex]\mathbf{P(x \ge 9) =0.225 }[/tex]
(a ii) Probability of selecting 9 or more female wolves
The given parameters are:
[tex]\mathbf{p = 0.40}[/tex] --- the probability of selecting a female wolf
So, we have:
[tex]\mathbf{P(x \ge 9) = P(9) + P(10) + P(11) + P(12)}[/tex]
Using [tex]\mathbf{P(x) = ^nC_x \times p^x \times (1 - p)^{n -x}}[/tex], we have:
[tex]\mathbf{P(x \ge 9) = ^{12}C_9 \times 0.4^9 \times (1 - 0.4)^{12-9} +..............+^{12}C_{12} \times 0.4^{12} \times (1 - 0.4)^{12-12} }[/tex]
[tex]\mathbf{P(x \ge 9) = 220 \times 0.0000566231+..........+1 \times 0.00001677721}[/tex]
[tex]\mathbf{P(x \ge 9) =0.015 }[/tex]
(a ii) Probability of selecting fewer than 6 female wolves
The given parameters are:
[tex]\mathbf{p = 0.40}[/tex] --- the probability of selecting a female wolf
Using the complement rule, we have:
[tex]\mathbf{P(x < 6) = 1 - P(x \ge 6)}[/tex]
So, we have:
[tex]\mathbf{P(x < 6) = 1 - [P(6) + P(7) + P(8) + P(x \ge 9)]}[/tex]
Using [tex]\mathbf{P(x) = ^nC_x \times p^x \times (1 - p)^{n -x}}[/tex], we have:
[tex]\mathbf{P(x < 6) = 1 - [^{12}C_6 \times 0.4^6 \times 0.6^6 + ^{12}C_7 \times 0.4^7 \times 0.6^5 + ^{12}C_8 \times 0.4^8 \times 0.6^4 + P(x \ge 9)}[/tex][tex]\mathbf{P(x < 6) = 1 - [924 \times 0.00019110297 +........ + 0.0153]}[/tex]
[tex]\mathbf{P(x < 6) = 1 - [0.335]}[/tex]
[tex]\mathbf{P(x < 6) = 0.665}[/tex]
(b i) Probability of selecting 9 or more wolves out of 12, since 1918
The given parameters are:
[tex]\mathbf{p = 0.70}[/tex] --- the probability of selecting a male wolf
So, we have:
[tex]\mathbf{P(x \ge 9) = P(9) + P(10) + P(11) + P(12)}[/tex]
Using [tex]\mathbf{P(x) = ^nC_x \times p^x \times (1 - p)^{n -x}}[/tex], we have:
[tex]\mathbf{P(x \ge 9) = ^{12}C_9 \times 0.7^9 \times (1 - 0.7)^{12-9} +..............+^{12}C_{12} \times 0.7^{12} \times (1 - 0.7)^{12-12} }[/tex]
[tex]\mathbf{P(x \ge 9) = 220 \times 0.00108954738+..........+1 \times 0.0138412872}[/tex]
[tex]\mathbf{P(x \ge 9) =0.493 }[/tex]
(b ii) Probability of selecting 9 or more female wolves
The given parameters are:
[tex]\mathbf{p = 0.30}[/tex] --- the probability of selecting a female wolf
So, we have:
[tex]\mathbf{P(x \ge 9) = P(9) + P(10) + P(11) + P(12)}[/tex]
Using [tex]\mathbf{P(x) = ^nC_x \times p^x \times (1 - p)^{n -x}}[/tex], we have:
[tex]\mathbf{P(x \ge 9) = ^{12}C_9 \times 0.3^9 \times (1 - 0.3)^{12-9} +..............+^{12}C_{12} \times 0.3^{12} \times (1 - 0.3)^{12-12} }[/tex]
[tex]\mathbf{P(x \ge 9) = 220 \times 0.00000675126+..........+1 \times 5.31441e-7}[/tex]
[tex]\mathbf{P(x \ge 9) =0.002 }[/tex]
(b iii) Probability of selecting fewer than 6 female wolves
The given parameters are:
[tex]\mathbf{p = 0.40}[/tex] --- the probability of selecting a female wolf
Using the complement rule, we have:
[tex]\mathbf{P(x < 6) = 1 - P(x \ge 6)}[/tex]
So, we have:
[tex]\mathbf{P(x < 6) = 1 - [P(6) + P(7) + P(8) + P(x \ge 9)]}[/tex]
Using [tex]\mathbf{P(x) = ^nC_x \times p^x \times (1 - p)^{n -x}}[/tex], we have:
[tex]\mathbf{P(x < 6) = 1 - [^{12}C_6 \times 0.3^6 \times 0.7^6 + ^{12}C_7 \times 0.3^7 \times 0.7^5 + ^{12}C_8 \times 0.3^8 \times 0.7^4 + P(x \ge 9)}[/tex]
[tex]\mathbf{P(x < 6) = 1 - [924 \times 0.4^6 \times 0.7^6 + 792 \times 0.3^7 \times 0.7^5 + 495 \times 0.3^8 \times 0.7^4 + 0.002}[/tex]
[tex]\mathbf{P(x < 6) = 1 - [0.484]}[/tex]
[tex]\mathbf{P(x < 6) = 0.516}[/tex]
Read more about probabilities at:
https://brainly.com/question/11234923