Answer:
a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers; b) A series is divergent if it is not convergent. A series is convergent if the sequence of partial sums is a convergent sequence.
Step-by-step explanation:
A sequence is a pattern. It is an ordered list of objects, such as numbers, letters, colors, etc.
A series is a sum of a sequence.
A divergent series is one that is not convergent.
A convergent series is one in which the sequence of partial sums approaches a limit; this means the partial sums form a convergent sequence.