Respuesta :

Answer:

Yes, y varies directly with x, and the equation is [tex]y=1.6x[/tex].

Step-by-step explanation:

To check where there is a direct relationship between x and y, we need to check whether all the x,y pairs we have fit some rule:

[tex]y=k\times x[/tex].

For the first pair (x=4, y=6.4),

[tex]6.4=k\times 4[/tex]

Therefore [tex]k = 1.6[/tex].

For the second pair (x=7, y=11.2),

[tex]11.2=k\times 7[/tex]

Therefore [tex]k = 1.6[/tex].

For the third pair (x=10, y=16),

[tex]16=k\times 10[/tex]

Therefore [tex]k = 1.6[/tex].

For the second pair (x=13, y=20.8),

[tex]20.8=k\times 13[/tex]

Therefore [tex]k = 1.6[/tex].

So x does directly vary with y, and we have found out that [tex]k=1.6[/tex].

Answer:   [tex]\bold{\dfrac{y}{x}=1.6\quad \text{which is also equivalent to}\quad y=1.6x}[/tex]

Step-by-step explanation:

[tex]\begin {array}{c|c||l}x&y&\dfrac{y}{x}=k\\--&--&-----\\4&6.4&\dfrac{6.4}{4}=1.6\\\\11.2&7&\dfrac{11.2}{7}=1.6\\\\10&16&\dfrac{16}{10}=1.6\\\\13&20.8&\dfrac{20.8}{13}=1.6\\\end{array}\\[/tex]

Since the k-value is the same for every value in the table, we can conclude that y varies directly with x and the constant of variation k = 1.6