Answer:
the limit is 1/16
Step-by-step explanation:
At x=4, the function is indeterminate: 0/0, so l'Hopital's rule can be used to find the limit. Differentiating numerator and denominator, you get ...
lim = (1/√x) / (2x)
Evaluating this at x=4 gives (1/2)/8 = 1/16.
The limit as x approaches 4 is 1/16.