QUESTION 1
The given logarithmic expression is
[tex]\log_4(\frac{1}{16})[/tex]
We rewrite [tex]\frac{1}{16}[/tex] in the index form to base 4.
This implies that;
[tex]\log_4(\frac{1}{16})=\log_4(4^{-2})[/tex]
We now apply the power rule: [tex]\log_a(m^n)=n\log_a(m^n)[/tex].
[tex]\log_4(\frac{1}{16})=-2\log_4(4)[/tex]
Recall that logarithm of the base is 1.
[tex]\log_4(\frac{1}{16})=-2(1)[/tex]
[tex]\log_4(\frac{1}{16})=-2[/tex]
QUESTION 2
The given logarithm is;
[tex]\log_2(\sqrt[5]{32})[/tex]
[tex]\log_2(\sqrt[5]{2^5})[/tex]
This is the same as;
[tex]\log_2(2^{5\times \frac{1}{5}})[/tex]
[tex]\log_2(2^{1})[/tex]
[tex]\log_2(2)=1[/tex]