Respuesta :

QUESTION 1

The given logarithmic expression is

[tex]\log_4(\frac{1}{16})[/tex]

We rewrite [tex]\frac{1}{16}[/tex] in the index form to base 4.

This implies that;

[tex]\log_4(\frac{1}{16})=\log_4(4^{-2})[/tex]

We now apply the power rule: [tex]\log_a(m^n)=n\log_a(m^n)[/tex].

[tex]\log_4(\frac{1}{16})=-2\log_4(4)[/tex]

Recall that logarithm of the base is 1.

[tex]\log_4(\frac{1}{16})=-2(1)[/tex]

[tex]\log_4(\frac{1}{16})=-2[/tex]

QUESTION 2

The given logarithm is;

[tex]\log_2(\sqrt[5]{32})[/tex]

[tex]\log_2(\sqrt[5]{2^5})[/tex]

This is the same as;

[tex]\log_2(2^{5\times \frac{1}{5}})[/tex]

[tex]\log_2(2^{1})[/tex]

[tex]\log_2(2)=1[/tex]

RELAXING NOICE
Relax