QUESTION 1
The given logarithm is
[tex]\log_7\sqrt{a^3b^9}[/tex]
We rewrite to obtain;
[tex]\log_7(a^3b^9)^{\frac{1}{2}}[/tex]
Use the power rule of logarithm ; [tex]\log_a(m^n)=n\log_a(m)[/tex]
[tex]\frac{1}{2}\log_7(a^3b^9)[/tex]
Use the product rule; [tex]\log_a(mn)=\log_a(m)+\log_a(n)[/tex]
[tex]\frac{1}{2}[\log_7(a^3)+\log_7(b^9)][/tex]
Use the power rule of logarithms again;
[tex]\frac{1}{2}[3\log_7(a)+9\log_7(b)][/tex]
Or
[tex]\frac{3}{2}\log_7(a)+\frac{9}{2}\log_7(b)][/tex]
QUESTION 2
Given;
[tex]\log_6(\frac{x^5}{y^9})[/tex]
Apply the quotient rule of logarithm; [tex]\log_a(m)-\log_a(n)=\log_a(\frac{m}{n} )[/tex]
[tex]\log_6(\frac{x^5}{y^9})=\log_6(x^5)-\log_6(y^9)[/tex]
Apply the power rule to get;
[tex]\log_6(\frac{x^5}{y^9})=5\log_6(x)-9\log_6(y)[/tex]
QUESTION 3
Given;
[tex]\log_8(x^3y^7)[/tex]
Use the product rule to get;
[tex]=\log_8(x^3)+\log_8(y^7)[/tex]
Use the power rule now;
[tex]=3\log_8(x)+7\log_8(y)[/tex]