Expand the following logs:

[tex]log_{7} \sqrt{a^{3}b^{9} }[/tex]

[tex]log_{6} (\frac{x^{5} }{y^{9} } )[/tex]

[tex]log_{8} (x^{3} y^{7} )[/tex]

Respuesta :

QUESTION 1

The given logarithm is

[tex]\log_7\sqrt{a^3b^9}[/tex]

We rewrite to obtain;

[tex]\log_7(a^3b^9)^{\frac{1}{2}}[/tex]

Use the power rule of logarithm ; [tex]\log_a(m^n)=n\log_a(m)[/tex]

[tex]\frac{1}{2}\log_7(a^3b^9)[/tex]

Use the product rule; [tex]\log_a(mn)=\log_a(m)+\log_a(n)[/tex]

[tex]\frac{1}{2}[\log_7(a^3)+\log_7(b^9)][/tex]

Use the power rule of logarithms again;

[tex]\frac{1}{2}[3\log_7(a)+9\log_7(b)][/tex]

Or

[tex]\frac{3}{2}\log_7(a)+\frac{9}{2}\log_7(b)][/tex]

QUESTION 2

Given;

[tex]\log_6(\frac{x^5}{y^9})[/tex]

Apply the quotient rule of logarithm; [tex]\log_a(m)-\log_a(n)=\log_a(\frac{m}{n} )[/tex]

[tex]\log_6(\frac{x^5}{y^9})=\log_6(x^5)-\log_6(y^9)[/tex]

Apply the power rule to get;

[tex]\log_6(\frac{x^5}{y^9})=5\log_6(x)-9\log_6(y)[/tex]

QUESTION 3

Given;

[tex]\log_8(x^3y^7)[/tex]

Use the product rule to get;

[tex]=\log_8(x^3)+\log_8(y^7)[/tex]

Use the power rule now;

[tex]=3\log_8(x)+7\log_8(y)[/tex]

RELAXING NOICE
Relax