A series combination of two resistors, 7.25 ω and 4.03 ω, is connected to a 9.00 v battery.

a. calculate the equivalent resistance of the circuit and the current.

b. what is the potential difference across each resistor?

Respuesta :

a. [tex]11.28\Omega[/tex]

The equivalent resistance of a series combination of two resistors is equal to the sum of the individual resistances:

[tex]R_{eq}=R_1 + R_2[/tex]

In this circuit, we have

[tex]R_1 = 7.25 \Omega\\R_2 = 4.03 \Omega[/tex]

Therefore, the equivalent resistance is

[tex]R_{eq}=7.25 \Omega + 4.03 \Omega=11.28 \Omega[/tex]

b. 5.8 V, 3.2 V

First of all, we need to determine the current flowing through each resistor, which is given by Ohm's law:

[tex]I=\frac{V}{R_{eq}}[/tex]

where V = 9.00 V and [tex]R_{eq}=11.28 \Omega[/tex]. Substituting,

[tex]I=\frac{9.00 V}{11.28 \Omega}=0.8 A[/tex]

Now we can calculate the potential difference across each resistor by using Ohm's law again:

[tex]V_1 = I R_1 = (0.8 A)(7.25 \Omega)=5.8 V[/tex]

[tex]V_2 = I R_2 = (0.8 A)(4.03 \Omega)=3.2 V[/tex]

ACCESS MORE