In a model AC generator, a 505 turn rectangular coil 8.0 cm by 30 cm rotates at 120 rev/min in a uniform magnetic field of 0.59 T.

(a) What is the maximum emf induced in the coil?

(b) What is the instantaneous value of the emf in the coil at t = (π/32) s? Assume that the emf is zero at t = 0.

(c) What is the smallest value of t for which the emf will have its maximum value? s

Respuesta :

  • (a) Maximum emf: 90 V (2 sig. fig.)
  • (b) Emf at π/32 s: 85 V.
  • (c) t = 0.125 s.

Explanation

(a)

The maximum emf in the coil depends on

  • the maximum flux linkage through the coil, and
  • the angular velocity of the coil.

Maximum flux linkage in the coil:

[tex]\phi_\text{max} = B\cdot A\cdot N = 0.59\;\text{T}\times(0.08 \times 0.30)\;\text{m}^{2} \times 505 = 7.2\;\text{Wb}[/tex].

Frequency of the rotation:

[tex]f = 120\;\text{rev}\cdot\text{min}^{-1} = 2 \;\text{rev}\cdot\text{s}^{-1}[/tex].

Angular velocity of the coil:

[tex]\omega = 2\;\pi\;\text{rev}^{-1}\times 2\;\text{rev}\cdot\text{s}^{-1} = 4 \pi \;\text{s}^{-1}[/tex].

Maximum emf in the coil:

[tex]\epsilon_\text{max} = \omega\cdot\phi_\text{max} = 4\;\pi \times 7.2\;\text{Wb} = 90\;\text{V}[/tex].

(b)

Emf varies over time. The trend of change in emf over time resembles the shape of either a sine wave or a cosine wave since the coil rotates at a constant angular speed. The question states that emf is "zero at t = 0." As a result, a sine wave will be the most appropriate here since [tex]\sin{0} = 0[/tex].

[tex]\displaystyle \epsilon(t) = \epsilon_\text{max}\cdot \sin{(\omega\cdot t)}[/tex].

Make sure that your calculator is in the radian mode.

[tex]\displaystyle \epsilon\left(\frac{\pi}{32}\right) = 90\;\text{V}\times \sin\left(4\;\pi\times \frac{\pi}{32}\right) = 85\;\text{V}[/tex].

(c)

Consider the shape of a sine wave. The value of [tex]\displaystyle \sin\left(\omega \cdot t\right)[/tex] varies between -1 and 1 as the value of [tex]t[/tex] changes. The value of [tex]\epsilon[/tex] at time [tex]t[/tex] depends on the value of [tex]\sin(\omega \cdot t)[/tex].

[tex]\sin(\omega \cdot t)[/tex] reaches its first maximum for [tex]t\ge 0[/tex] when what's inside the sine function is equal to [tex]\pi/2[/tex].

In other words, the first maximum emf occurs when

[tex]\omega \cdot t = \dfrac{\pi}{2}[/tex],

where

[tex]\sin{\omega \cdot t} = 1[/tex],

and

[tex]\epsilon = \epsilon_\text{max}[/tex].

[tex]\displaystyle t = \frac{\pi}{2}/\omega = \frac{1}{8} = 0.125\;\text{s}[/tex].

RELAXING NOICE
Relax