Help with Algebra! Completing the square!

Answer:
Part a:[tex]f(x)=-2(x+1)^2+8[/tex]
Part b: Maximum value
Step-by-step explanation:
Part a.
The given function is [tex]f(x)=-2x^2-4x+6[/tex].
We need to complete the square to obtain the vertex form
[tex]f(x)=-2(x^2+2x)+6[/tex]
Add and subtract the square of half the coefficient of x.
[tex]f(x)=-2(x^2+2x+(1)^2)--2(1)^2+6[/tex]
[tex]f(x)=-2(x^2+2x+1)+2+6[/tex]
The quadratic trinomial within the parenthesis is now a perfect square
[tex]f(x)=-2(x+1)^2+8[/tex]
The vertex form is [tex]f(x)=-2(x+1)^2+8[/tex]
Part b
Comparing [tex]f(x)=-2(x+1)^2+8[/tex] to [tex]f(x)=a(x-h)^2+k[/tex], we have a=-2.
Since a is negative the vertex is a maximum point.
Hence the function has a maximum value