Respuesta :
Answer:
[tex]x=\dfrac{\pi k}{2},\ k\in Z.[/tex]
Step-by-step explanation:
Simplify the equation [tex](\sin x-\cos x)^2=1:[/tex]
[tex]\sin^2 x-2\sin x\cos x+\cos ^2x=1,\\ \\ (\sin^2x+\cos^2x)-2\sin x\cos x=1.\\[/tex]
Since
[tex]\sin^2 x+\cos^2 x=1[/tex]
and
[tex]2\sin x\cos x=\sin 2x,[/tex]
we have
[tex]1-\sin 2x=1,\\ \\\sin 2x=0,\\ \\2x=\pi k,\ k\in Z,\\ \\x=\dfrac{\pi k}{2},\ k\in Z.[/tex]
Answer:
x = πn/2
Step-by-step explanation:
We have given the equation:
(sinx-cosx)²=1
We have to solve it.
(sinx-cosx)²=1
sin²x+cos²x-2sinxcosx =1
As we know that :
sin²x+cos²x = 1
so, (1)-2sinxcosx = 1
1-2sinxcosx = 1
1-sin2x =1
sin2x = 0
2x = sin⁻¹ (0)
Sinx is 0 at πk so we get,
2x = πn (n belongs to Z)
x = πn/2 is the solution.