Respuesta :

frika

Answer:

[tex]x=\dfrac{\pi k}{2},\ k\in Z.[/tex]

Step-by-step explanation:

Simplify the equation [tex](\sin x-\cos x)^2=1:[/tex]

[tex]\sin^2 x-2\sin x\cos x+\cos ^2x=1,\\ \\ (\sin^2x+\cos^2x)-2\sin x\cos x=1.\\[/tex]

Since

[tex]\sin^2 x+\cos^2 x=1[/tex]

and

[tex]2\sin x\cos x=\sin 2x,[/tex]

we have

[tex]1-\sin 2x=1,\\ \\\sin 2x=0,\\ \\2x=\pi k,\ k\in Z,\\ \\x=\dfrac{\pi k}{2},\ k\in Z.[/tex]

Answer:

x = πn/2

Step-by-step explanation:

We have given the equation:

(sinx-cosx)²=1

We have to solve it.

(sinx-cosx)²=1

sin²x+cos²x-2sinxcosx =1

As we know that :

sin²x+cos²x = 1

so, (1)-2sinxcosx = 1

1-2sinxcosx = 1

1-sin2x =1

sin2x = 0

2x = sin⁻¹ (0)

Sinx is 0 at πk so we get,

2x = πn   (n belongs to Z)

x = πn/2 is the solution.

ACCESS MORE
EDU ACCESS