Respuesta :
Answer:
b) 20
Step-by-step explanation:
Here m∠C = 90, It is a right triangle.
So we can use the Pythagorean theorem.
b = √(c^2 - a^2)
Given: a =21 and c = 29. Now let's plug in these values in the above formula, we get
b = √(29)^2 - (21)^2
b = √(841 - 441)
b = √400
b = 20
Therefore, the side length b = 20.
Hope this will helpful.
Thank you.
Answer:
The correct option is 1.
Step-by-step explanation:
Given information:∠C = 90°, side c = 29, and side a = 21.
In a right angled triangle, the opposite side of right angle is hypotenuse.
Since angle C is a right angle, therefore ABC is a right angled triangle with hypotenuse c=29.
According to Pythagoras theorem,
[tex](hypotenuse)^2=(leg_1)^2+(leg_2)^2[/tex]
Using Pythagoras theorem, we get
[tex](c)^2=(a)^2+(b)^2[/tex]
[tex](29)^2=(21)^2+(b)^2[/tex]
[tex]841=441+(b)^2[/tex]
[tex]841-441=(b)^2[/tex]
[tex]400=(b)^2[/tex]
Taking square root on both the sides.
[tex]\sqrt{400}=b[/tex]
[tex]20=b[/tex]
The value of b is 20 , therefore the correct option is 1.