Respuesta :

Answer:

b) 20

Step-by-step explanation:

Here m∠C = 90, It is a right triangle.

So we can use the Pythagorean theorem.

b = √(c^2 - a^2)

Given: a =21 and c = 29. Now let's plug in these values in the above formula, we get

b = √(29)^2 - (21)^2

b = √(841 - 441)

b = √400

b = 20

Therefore, the side length b = 20.

Hope this will helpful.

Thank you.

Answer:

The correct option is 1.

Step-by-step explanation:

Given information:∠C = 90°, side c = 29, and side a = 21.

In a right angled triangle, the opposite side of right angle is hypotenuse.

Since angle C is a right angle, therefore ABC is a right angled triangle with hypotenuse c=29.

According to Pythagoras theorem,

[tex](hypotenuse)^2=(leg_1)^2+(leg_2)^2[/tex]

Using Pythagoras theorem, we get

[tex](c)^2=(a)^2+(b)^2[/tex]

[tex](29)^2=(21)^2+(b)^2[/tex]

[tex]841=441+(b)^2[/tex]

[tex]841-441=(b)^2[/tex]

[tex]400=(b)^2[/tex]

Taking square root on both the sides.

[tex]\sqrt{400}=b[/tex]

[tex]20=b[/tex]

The value of b is 20 , therefore the correct option is 1.