Respuesta :
Answer:
D. [tex]11[/tex]
Step-by-step explanation:
If the average rate of change on the interval [2,6] is 15 then;
[tex]\frac{f(2)-f(6)}{2-6}=15[/tex]
[tex]\frac{f(2)-71}{-4}=15[/tex]
Multiply both sides by -4.
[tex]f(2)-71=15\times -4[/tex]
[tex]f(2)-71=-60[/tex]
Group similar terms;
[tex]f(2)=-60+71[/tex]
Simplify;
[tex]f(2)=11[/tex]
Answer:
Choice D
Step-by-step explanation:
The average rate of change over the interval [2,6] is simply the slope of the line that joins the points (2,f(2)) and (6,f(6)). To determine f(2) we shall thus be solving the equation;
[tex]\frac{f(6)-f(2)}{6-2}=15\\\frac{71-f(2)}{4}=15\\71-f(2)=60\\f(2)=71-60=11[/tex]