Respuesta :

Answer:

D. [tex]11[/tex]

Step-by-step explanation:

If the average rate of change on the interval [2,6] is 15 then;

[tex]\frac{f(2)-f(6)}{2-6}=15[/tex]

[tex]\frac{f(2)-71}{-4}=15[/tex]

Multiply both sides by -4.

[tex]f(2)-71=15\times -4[/tex]

[tex]f(2)-71=-60[/tex]

Group similar terms;

[tex]f(2)=-60+71[/tex]

Simplify;

[tex]f(2)=11[/tex]

Answer:

Choice D

Step-by-step explanation:

The average rate of change over the interval [2,6] is simply the slope of the line that joins the points (2,f(2)) and (6,f(6)). To determine f(2) we shall thus be solving the equation;

[tex]\frac{f(6)-f(2)}{6-2}=15\\\frac{71-f(2)}{4}=15\\71-f(2)=60\\f(2)=71-60=11[/tex]