Respuesta :
For any value of [tex]x[/tex] and any integer [tex]n[/tex], [tex]\cos(x+2n\pi)=\cos x[/tex]. Notice that
[tex]\dfrac{27\pi}8=\dfrac{11\pi}8+2\pi[/tex]
which means
[tex]\cos\dfrac{27\pi}8=\cos\dfrac{11\pi}8[/tex]
but [tex]\dfrac{11\pi}8[/tex] corresponds to an angle that falls in the third quadrant. Now,
[tex]\dfrac{11\pi}8=\dfrac{3\pi}8+\pi[/tex]
and [tex]\dfrac{3\pi}8[/tex] does fall in the first quadrant. We use the fact that
[tex]\cos(x+\pi)=-\cos x[/tex]
which tells us
[tex]\cos\dfrac{27\pi}8=\cos\dfrac{11\pi}8=-\cos\dfrac{3\pi}8[/tex]
The correct answer is C on edge 2020!
Just got it right on the quiz, hope this helps!! :)