Respuesta :
Answer:
[tex]\frac{1}{4}x^4-x^2+3x+c[/tex]
Step-by-step explanation:
Use the the integration rules for powers of x: [tex]\int x^n dx = \frac{1}{(n+1)} x^{n+1}[/tex] and the additive property of integrals:
[tex]f(x) = \int (x^3-2x+3)dx= \int x^3 dx-2\int x dx+\int 3 dx = \\=\frac{1}{4}x^4-x^2+3x+c[/tex]
with c being an arbitrary constant.
Answer:
[tex]\displaystyle f(x) = \frac{x^4}{4} - x^2 + 3x + C[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = \int {\bigg( x^3 - 2x + 3 \bigg)} \, dx[/tex]
Step 2: Integrate
- Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle f(x) = \int {x^3} \, dx - \int {2x} \, dx + \int {3} \, dx[/tex]
- Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle f(x) = \int {x^3} \, dx - 2\int {x} \, dx + 3\int {} \, dx[/tex]
- [Integrals] Integration Rule [Reverse Power Rule]: [tex]\displaystyle f(x) = \frac{x^4}{4} - 2 \bigg( \frac{x^2}{2} \bigg) + 3x + C[/tex]
- Simplify: [tex]\displaystyle f(x) = \frac{x^4}{4} - x^2 + 3x + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration