Answer:
[tex]\large\boxed{\dfrac{-v\pm\sqrt{v^2-19.6h}}{-9.8}}[/tex]
Step-by-step explanation:
[tex]h=-4.9t^2+vt\\h>0\ and\ v>0\\\\-4.9t^2+vt=h\qquad\text{subtract}\ h\text{from both sides}\\\\-4.9t^2+vt-h=0[/tex]
[tex]\text{The quadratic formula:}\\\\ax^2+bx+c=0\\\\\Delta=b^2-4ac\\\\if\ \Delta<0,\ then\ NO\ SOLUTION\\if\ \Delta=0,\ then\ ONE\ SOLUTION\\if\ \Delta>0,\ then\ TWO\ SOLUTIONS\ x=\dfrac{-b\pm\sqrt\Delta}{2a}[/tex]
[tex]-4.9t^2+vt-h=0\\\\a=-4.9,\ b=v,\ c=-h\\\\\Delta=v^2-4(-4.9)(-h)=v^2-19.6h\\\\t=\dfrac{-v\pm\sqrt{v^2-19.6h}}{2(-4.9)}=\dfrac{-v\pm\sqrt{v^2-19.6h}}{-9.8}[/tex]