Respuesta :
Answer: THIRD OPTION
Step-by-step explanation:
To solve the exercise you must add the area of the circles (which are equal) and the area of the rectangle.
(Multiply the formula of the area of a cylinder by 2, because both are equal)
The area of a circle is:
[tex]A=r^{2}\pi[/tex]
Where r is the radius
The area of a rectangle is:
[tex]A=lw[/tex]
Where l is the lenght and w is the width.
The lenght of the rectagle is the circumference of the circle:
[tex]l=2r\pi=2*2yd*\pi=4\pi[/tex]yd
Then the area of the cylinder is:
[tex]A=2(2yd)^{2}\pi+(4\pi)(12yd)=56\pi[/tex]
Answer:
56[tex]\pi[/tex]yd²
Step-by-step explanation:
A=2[tex]\pi rh +2\pi rx^{2}[/tex]
=2×[tex]\pi[/tex] × 2yd ×12yd +2×[tex]\pi[/tex]×2yd×2yd
=48[tex]\pi[/tex] yd² + 8[tex]\pi[/tex]yd²
=56 [tex]\pi[/tex]yd²