Respuesta :

Answer: THIRD OPTION

Step-by-step explanation:

To solve the exercise you must add the area of the circles (which are equal) and the area of the rectangle.

(Multiply the formula of the area of a cylinder by 2, because both are equal)

The area of a circle is:

[tex]A=r^{2}\pi[/tex]

Where r is the radius

The area of a rectangle is:

[tex]A=lw[/tex]

Where l is the lenght and w is the width.

The lenght of the rectagle is the circumference of the circle:

[tex]l=2r\pi=2*2yd*\pi=4\pi[/tex]yd

Then the area of the cylinder is:

 [tex]A=2(2yd)^{2}\pi+(4\pi)(12yd)=56\pi[/tex]

lucic

Answer:

56[tex]\pi[/tex]yd²

Step-by-step explanation:

A=2[tex]\pi rh +2\pi rx^{2}[/tex]

=2×[tex]\pi[/tex] × 2yd ×12yd +2×[tex]\pi[/tex]×2yd×2yd

=48[tex]\pi[/tex] yd² + 8[tex]\pi[/tex]yd²

=56 [tex]\pi[/tex]yd²