[tex]6.\\\text{We know}\ 9=3^2.\ \text{Therefore}\\\\9^2=(3^2)^2\\\\\text{use}\ (a^n)^m=a^{nm}\\\\9^2=(3^2)^2=3^{2\cdot2}=3^4\\\\\boxed{3^4=9^2}\\=================[/tex]
[tex]7.\\METHOD\ 1:\\\\\sqrt{7^4}=\sqrt{7^{2\cdot2}}\\\\\text{use}\ (a^n)^m=a^{nm}\\\\=\sqrt{(7^2)^2}\\\\\text{use}\ \sqrt{a^2}=a\ \text{for}\ a\geq0\\\\=\boxed{7^2}\\\\METHOD\ 2:\\\\\text{use}\ a^\frac{m}{n}=\sqrt[n]{a^m}\\\\\sqrt{7^4}=7^\frac{4}{2}=\boxed{7^2}\\=================[/tex]
[tex]8.\\5^a\times5^b=5^{11}\\\\a)\\\text{use}\ a^n\times a^m=a^{n+m}\\\\5^a\times5^b=5^{a+b}\\\\5^{a+b}=5^{11}\Rightarrow a+b=11\\\\11\ \text{is odd. The sum of even and odd is odd. Therefore}\ a\ \text{and}\ b\ \text{can't be even.}\\--------------------\\\\b)\\5\ \text{solutions}\\\\11=5+6\\11=4+7\\11=3+8\\11=2+9\\11=1+10[/tex]