Answer:
See explanation
Step-by-step explanation:
Consider the sequence [tex]\dfrac{1}{32},\ \dfrac{1}{8},\ \dfrac{1}{2}, 2,\ 8,...[/tex]
Rewrite it as
[tex]b_1=\dfrac{1}{32},\\ \\b_2=\dfrac{1}{8},\\ \\b_3=\dfrac{1}{2},\\ \\b_4=2,\\ \\b_5=8...[/tex]
The points on the coordinate plane are
[tex](1,b_1),\ (2,b_2),\ (3,b_3),\ (4,b_4),\ (5,b_5),...[/tex] (see attached graph).
Since
[tex]4=\dfrac{b_2}{b_1}=\dfrac{b_3}{b_2}=\dfrac{b_4}{b_3}=\dfrac{b_5}{b_4}...,[/tex] given sequence is geometric.