12a. Answer: d) x⁶ f'(x) + 6x⁵ f(x)
Step-by-step explanation:
Use the multiplication formula for derivatives:
y = a · b → y' = a'b + ab'
y = x⁶ · f(x)
a = x⁶ b = f(x)
a' = 6x⁵ b' = f'(x)
y' = a'b + ab'
y' = 6x⁵ f(x) + x⁶ f'(x)
***************************************************************
12b. Answer: [tex]\bold{b)\ y=\dfrac{xf'(x)-9f(x)}{x^{10}}'}[/tex]
Step-by-step explanation:
Use the division formula for derivatives:
[tex]y=\dfrac{a}{b}[/tex] → [tex]y' = \dfrac{a'b - ab'}{b^2}[/tex]
[tex]y=\dfrac{f(x)}{x^9}\\\\a=f(x)\qquad b=x^9\\\\a'=f(x)\qquad b'=9x^8\\\\y'=\dfrac{a'b-ab'}{b^2}\\\\y'=\dfrac{x^9f'(x)-9x^8f(x)}{(x^9)^2}\\\\.\ =\dfrac{x^9f'(x)-9x^8f(x)}{x^{18}}\\\\\text{factor out }x^{8}: y'=\dfrac{xf'(x)-9f(x)}{x^{10}}[/tex]
Note: You can also move the denominator to the top (it will have a negative exponent) and use the multiplication formula for derivatives.