Respuesta :
Answer:
B 6 x^2 sqrt(3)
Step-by-step explanation:
sqrt(6x^2) sqrt(18x^2)
We know that sqrt(a) sqrt(b) = sqrt(ab)
sqrt(6x^2*18x^2)
sqrt(108x^4)
sqrt(36 *3*x^4)
We know that sqrt(a) sqrt(b) = sqrt(ab)
sqrt(36)sqrt(x^4)sqrt(3)
6 x^2 sqrt(3)
Answer:
Option B=[tex]6x^2\sqrt3 [/tex]
Step-by-step explanation:
We are given that a product [tex]\sqrt{6x^2}\cdot \sqrt{18x^2}[/tex]
where [tex]x\geq 0[/tex]
We have to find that which is equivalent to given product
Factorize each term then we get
[tex]\sqrt{2\times3\times x^2}\cdot \sqrt{3\times3\times2\times x^2}[/tex]
[tex]x^2\sqrt{2\times 2\times 3\times 3\times3}[/tex]
[tex]\sqrt{6x^2}\cdot\sqrt{18x^2}=2\times 3x^2\sqrt 3[/tex]
[tex]\sqrt{6x^2}\cdot\sqrt{18x^2}=6\sqrt3 x^2[/tex]
Hence,option B is true.