Respuesta :

Answer:

B 6 x^2 sqrt(3)

Step-by-step explanation:

sqrt(6x^2) sqrt(18x^2)

We know that sqrt(a) sqrt(b) = sqrt(ab)

sqrt(6x^2*18x^2)

sqrt(108x^4)

sqrt(36 *3*x^4)

We know that sqrt(a) sqrt(b) = sqrt(ab)

sqrt(36)sqrt(x^4)sqrt(3)

6 x^2 sqrt(3)

Answer:

Option B=[tex]6x^2\sqrt3 [/tex]

Step-by-step explanation:

We are given that a product [tex]\sqrt{6x^2}\cdot \sqrt{18x^2}[/tex]

where [tex]x\geq 0[/tex]

We have to find that which is equivalent to given product

Factorize each term then we get

[tex]\sqrt{2\times3\times x^2}\cdot \sqrt{3\times3\times2\times x^2}[/tex]

[tex]x^2\sqrt{2\times 2\times 3\times 3\times3}[/tex]

[tex]\sqrt{6x^2}\cdot\sqrt{18x^2}=2\times 3x^2\sqrt 3[/tex]

[tex]\sqrt{6x^2}\cdot\sqrt{18x^2}=6\sqrt3 x^2[/tex]

Hence,option B is true.