Answer:
Step-by-step explanation:
[tex]a,\ b,\ c-\text{sides of a triangle}\\\\\text{If}\ a\leq b< c\ \text{and}\ a^2+b^2=c^2,\ \text{then it's the lengths of the sides of a right triangle}\\\\\text{If}\ a\leq b\leq c\ \text{and}\ a^2+b^2>c^2,\ \text{then it's the lengths of the sides of a acute triangle}\\\\\text{If}\ a\leq b< c\ \text{and}\ a^2+b^2<c^2,\ \text{then it's the lengths of the sides of a obtuse triangle}[/tex]
[tex]\text{Triangle condition:}\\\text{That each side has to be shorter than the sum of the other two sides}\\\text{and longer than their difference.}\\\\\text{If}\ a\leq b\leq c,\ \text{then}\ a+b>c.[/tex]
[tex]--------------------------\\a.\\a=1,\ b=2,\ c=3\\\\a+b=1+2=3=c\\\\\text{These are not the lengths of the sides of the triangle.}\\----------------------------\\b.\\a=6,\ b=8,\ c=10\\\\a+b=6+8=14>10=c\qquad OK\\\\a^2+b^2=6^2+8^2=36+64=100\\\\c^2=10^2=100\\\\a^2+b^2=c^2\\\\\text{It's the right triangle.}\\----------------------------[/tex]
[tex]c.\\a=6,\ b=7,\ c=8\\\\a+b=6+7=13>8\qquad OK\\\\a^2+b^2=6^2+7^2=36+49=85\\\\c^2=8^2=64\\\\a^2+b^2>c^2\\\\\text{It's the acute triangle.}\\----------------------------\\d.\\a=4,\ b=6,\ c=10\\\\a+b=4+6=10=c\\\\\text{These are not the lengths of the sides of the triangle.}[/tex]