Respuesta :

Answer:

           √c

b = ± ---------

            3c

Step-by-step explanation:

Let's first isolate b².  To do this, divide both sides of the given equaion by 9c:

 a

------ = b²

9c

Now take the square root of both sides:

           1

b = ± --------

          3√c

Usually it's best not to have the √  symbol in the denominator.  So, multiply numerator and denominator of the above fraction by √c, obtaining:

           √c

b = ± ---------

            3c

The value of b by solving is [tex]$b=\pm \frac{1}{3} \sqrt{\frac{a}{c}}$[/tex].

How to find the value of b?

Given expression,

[tex]$a=9 b^{2} c$[/tex]

Consider the given expression [tex]$a=9 b^{2} c$[/tex]

Divide both sides by c, and we have [tex]$\frac{a}{c}=9 b^{2}$[/tex]

Again divide by 9, we have [tex]\frac{a}{9 c}=b^{2}[/tex]

Taking square roots on both sides, we have, [tex]$\sqrt{\frac{a}{9 c}}=\sqrt{b^{2}}$[/tex]

Simplify, we have,

[tex]$\sqrt{\frac{a}{9 c}}=b$[/tex]

We know [tex]$\sqrt{9}=\pm 3$[/tex]

Thus, [tex]$b=\pm \frac{1}{3} \sqrt{\frac{a}{c}}$[/tex].

Hence, The value of b by solving is [tex]$b=\pm \frac{1}{3} \sqrt{\frac{a}{c}}$[/tex].

To learn more about the expression

https://brainly.com/question/19864285

#SPJ2