Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identities

tan²x + 1 = sec²x and sec x = [tex]\frac{1}{cosx}[/tex]

Consider the left side

Express the sum as a single fraction

[tex]\frac{secx+tanx+secx-tanx}{(secx-tanx)(secx+tanx)}[/tex]

= [tex]\frac{2secx}{sec^2x-tan^2x}[/tex]

= [tex]\frac{2secx}{tan^2x+1-tan^2x}[/tex]

= 2sec x

= [tex]\frac{2}{cosx}[/tex] = right side ⇒ proven