Respuesta :
Here is your answer
[tex][I am using ☆ instead of theta][/tex]
[tex]sin☆= -4/5[/tex]
[tex]{sin}^{2}☆= {(-4/5)}^{2}= 16/25[/tex]
Now,
[tex]cos☆= \sqrt{1-{sin}^{2}☆}[/tex]
[tex]cos☆= \sqrt{1- (16/25)}[/tex]
[tex]cos☆= \sqrt{(25-16)/25}[/tex]
[tex]cos☆= \sqrt{9/25}[/tex]
[tex]cos☆= 3/5 [/tex]
HOPE IT IS USEFUL
[tex][I am using ☆ instead of theta][/tex]
[tex]sin☆= -4/5[/tex]
[tex]{sin}^{2}☆= {(-4/5)}^{2}= 16/25[/tex]
Now,
[tex]cos☆= \sqrt{1-{sin}^{2}☆}[/tex]
[tex]cos☆= \sqrt{1- (16/25)}[/tex]
[tex]cos☆= \sqrt{(25-16)/25}[/tex]
[tex]cos☆= \sqrt{9/25}[/tex]
[tex]cos☆= 3/5 [/tex]
HOPE IT IS USEFUL
Answer:
cosΘ = [tex]\frac{3}{5}[/tex]
Step-by-step explanation:
Using the trigonometric identity
sin² x + cos²x = 1
⇒ cosx = ± [tex]\sqrt{1-sin^2x}[/tex]
Since 270 < Θ < 360 then cosΘ > 0
cosΘ = [tex]\sqrt{1-(4/5)^2}[/tex]
= [tex]\sqrt{1-\frac{16}{25} }[/tex]
= [tex]\sqrt{\frac{9}{25} }[/tex] = [tex]\frac{3}{5}[/tex]