Respuesta :

Here is your answer

[tex][I am using ☆ instead of theta][/tex]

[tex]sin☆= -4/5[/tex]

[tex]{sin}^{2}☆= {(-4/5)}^{2}= 16/25[/tex]

Now,

[tex]cos☆= \sqrt{1-{sin}^{2}☆}[/tex]

[tex]cos☆= \sqrt{1- (16/25)}[/tex]

[tex]cos☆= \sqrt{(25-16)/25}[/tex]

[tex]cos☆= \sqrt{9/25}[/tex]

[tex]cos☆= 3/5 [/tex]

HOPE IT IS USEFUL

Answer:

cosΘ = [tex]\frac{3}{5}[/tex]

Step-by-step explanation:

Using the trigonometric identity

sin² x + cos²x = 1

⇒ cosx = ± [tex]\sqrt{1-sin^2x}[/tex]

Since 270 < Θ < 360 then cosΘ > 0

cosΘ = [tex]\sqrt{1-(4/5)^2}[/tex]

         = [tex]\sqrt{1-\frac{16}{25} }[/tex]

         = [tex]\sqrt{\frac{9}{25} }[/tex] = [tex]\frac{3}{5}[/tex]