Respuesta :
Answer:
[tex]\frac{4^8-1}{32}[/tex]
Step-by-step explanation:
[tex]h(x)=4^{(x+2)} +7[/tex]
We know that formula for average rate of change of a function from a to b is
[tex]\frac{f(b)-f(a)}{b-a}[/tex]
Here f equals h and a =-3 b=5
h(a) = [tex]4^{5+2} +7 = 4^7+7[/tex]
and
h(b) = [tex]4^{-3+2} +7 = \frac{1}{4} +7[/tex]
h(b)-h(a) =[tex]4^7-\frac{1}{4} =\frac{4^8-1}{4}[/tex]
b-a = 5-(-3) =8
Hence average rate of change is
[tex]\frac{4^8-1}{4}(\frac{1}{8} )=\frac{4^8-1}{32}[/tex]
Answer: 2048
Step-by-step explanation:
h(x) = 4ˣ⁺² + 7
h(5) = 4⁵⁺² + 7
= 4⁷ + 7
h(-3) = 4⁻³⁺² + 7
= 4⁻¹ + 7
Average rate of change is the slope of the interval.
[tex]\dfrac{y_2-y_1}{x_2-x_1} = \dfrac{h(5)-h(-3)}{5 - (-3)}=\dfrac{(4^7+7)-(4^{-1}+7)}{5 + 3} = \dfrac{16391-7.25}{8}=2048[/tex]