Drag each tile to the correct box.

Order the simplification steps of the expression below using the properties of rational exponents.

Drag each tile to the correct box Order the simplification steps of the expression below using the properties of rational exponents class=

Respuesta :

Answer:

[tex]3x^{2}y^{2}\sqrt[4]{7xy^{3}}[/tex].

Step-by-step explanation:

Since we have to find the simplified form of the expression as below

[tex]\sqrt[4]{567x^{9}y^{11}}[/tex]

we will solve the expression as below

[tex]=[567x^{9}y^{11}]^{\frac{1}{4}}[/tex]

[tex]=(81\times 7)^{\frac{1}{4}}\times x^{\frac{9}{4}}\times y^{\frac{11}{4}}[/tex]

[tex]=81^{\frac{1}{4}}.7^{\frac{1}{4}}.x^{\frac{8}{4}+\frac{1}{4}}.y^{\frac{8}{4}+\frac{3}{4}}[/tex]

[tex]=(3^{4})^{\frac{1}{4}}.7^{\frac{1}{4}}.x^{2+\frac{1}{4}}.y^{2+\frac{3}{4}}[/tex]

[tex]=3^{1}.7^{\frac{1}{4}}.x^{2}.x^{\frac{1}{4}}.y^{2}.y^{\frac{3}{4}}[/tex]

[tex]=3.x^{2}.y^{2}.(7^{\frac{1}{4}}.x^{\frac{1}{4}}.y^{\frac{3}{4}})[/tex]

[tex]=3x^{2}y^{2}.(7xy^{3})^{\frac{1}{4}}[/tex]

[tex]=3x^{2}y^{2}\sqrt[4]{7xy^{3}}[/tex].

Answer:

Have a great rest of your day :)

Step-by-step explanation:

Ver imagen Аноним
RELAXING NOICE
Relax