Respuesta :

Answer:

1) 29.2 feet ( approx)

2) 45988.6 feet.

Step-by-step explanation:

1) By the given diagram,

We can write,

[tex]tan 22^{\circ} = \frac{x}{60}[/tex]

[tex]\implies x = 60\times tan22^{\circ} = 24.2415735501\approx 24.2[/tex]

Thus, the height of the barn from the ground = 24.2 + 5 = 29.2 feet ( Approx)

2) By the Alternative interior angle theorem,

The angle of elevation in this situation ( shown in the below diagram ) must be same as angle of depression and equals to 4°,

Hence, we can write,

[tex]sin4^{\circ}=\frac{3208}{x}[/tex]

[tex]x = \frac{3208}{sin4^{\circ}}=45988.5631801\approx 45988.6[/tex]

Thus, the plane is approximately 45988.6 feet away.

Ver imagen parmesanchilliwack
Ver imagen parmesanchilliwack

QUESTION 1

Let us determine the value of [tex]x[/tex] first.

Using the tangent ratio;

[tex]\tan(22\degree)=\frac{x}{60}[/tex]

[tex]\Rightarrow x=60\tan(22\degree)[/tex]

[tex]\Rightarrow x=24.2ft[/tex]

The height of the barn from the ground is [tex]5+24.2=29.2ft[/tex] to the nearest tenth.

QUESTION 2

We use the alternate interior angle property to obtain one of acute angles of the triangle to be [tex]4\degree[/tex]. See diagram.

We now use the sine ratio to get;

[tex]\sin(4\degree)=\frac{3208}{x}[/tex]

This implies that;

[tex]x=\frac{3208}{\sin(4\degree)}[/tex]

We simplify to get;

[tex]x=45988.56[/tex]

The airplane is about 45988.6 feet away.

Ver imagen kudzordzifrancis
RELAXING NOICE
Relax