Respuesta :

Space

Answer:

c. 20

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Constant]:                                                                                             [tex]\displaystyle \lim_{x \to c} b = b[/tex]

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Limit Property [Addition/Subtraction]:                                                                   [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]

Limit Property [Multiplied Constant]:                                                                     [tex]\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)[/tex]

Step-by-step explanation:

We are given the following limit:

[tex]\displaystyle \lim_{x \to 2} (3x^3 + x^2 - 8)[/tex]

Rewriting this limit using limit properties, we obtain:

[tex]\displaystyle \lim_{x \to 2} (3x^3 + x^2 - 8) = 3\lim_{x \to 2} x^3 + \lim_{x \to 2} x^2 - \lim_{x \to 2} 8[/tex]

Evaluate the limits using various limit rules:

[tex]\displaystyle \lim_{x \to 2} (3x^3 + x^2 - 8) = 3(2)^3 + (2)^2 - 8[/tex]

Simplify:

[tex]\displaystyle \lim_{x \to 2} (3x^3 + x^2 - 8) = 20[/tex]

And we have our answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Limits

ACCESS MORE
EDU ACCESS