Let's take the first derivative:
[tex]f'(x) = (-5e^{-x/3})' = -5 \times (e^{-x/3})' = -5e^{-x/3} \times \left(-\dfrac{1}{3}\right) = \dfrac{5}{3}e^{-x/3}.[/tex]
Notice that we can write this as:
[tex]f'(x) = -\dfrac{f(x)}{3}.[/tex]
By taking the derivative of both sides [tex]n[/tex] times, we get:
[tex]f^{(n+1)}(x) = -\dfrac{f^{(n)}}{3}.[/tex]
This means that each time you take a derivative, a factor of [tex]-\dfrac{1}{3}[/tex] will appear. So we conclude that:
[tex]f^{(n)}(x) = \left(-\dfrac{1}{3}\right)^nf(x).[/tex]
Taking [tex]n=6[/tex] and [tex]x=1[/tex], we get:
[tex]f^{(6)}(1) = \left(-\dfrac{1}{3}\right)^6 f(1) = \dfrac{-5e^{-1/3}}{729} = -\dfrac{5}{729}e^{-1/3}.[/tex]
So we finally get:
[tex]\boxed{-\dfrac{5}{729}e^{-1/3}}.[/tex]