Respuesta :

Answer:

[tex]\frac{27\sqrt{3} }{4} m^2[/tex]

Step-by-step explanation:

The area of a regular polygon is given by

[tex]Area=\frac{1}{2}ap[/tex]

where [tex]a[/tex] is the apothem and [tex]p[/tex] is the perimeter of the triangle.

The interior angle of a regular hexagon is

[tex]180-\frac{360}{6} =120\degree[/tex]

The line from the center to the given vertex bisects the 120 degree angle.

The hexagon is therefore divided into 6 equilateral triangles.

The apothem can be found using [tex]\sin(60\degree)=\frac{a}{3}[/tex]

This implies that;

[tex]a=3\sin(60\degree)[/tex]

[tex]a=\frac{3\sqrt{3} }{2}[/tex]

Recall that an equilateral triangle has all sides equal hence the perimeter of the regular hexagon is [tex]6\times 3=18m^2[/tex]

The area of the regular hexagon now becomes;

[tex]Area=\frac{1}{2}\times \frac{3\sqrt{3} }{2}\times 18m^2[/tex]

This simplifies to;

[tex]Area= \frac{27\sqrt{3} }{2}m^2[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico