A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 32.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 102 Incorrect: Your answer is incorrect. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. m (b) Find its total time of flight. s (c) Find its horizontal range. 186 Incorrect: Your answer is incorrect. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. m

Respuesta :

Before the engines fail [tex](0\le t\le3.00\,\rm s)[/tex], the rocket's horizontal and vertical position in the air are

[tex]x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t^2[/tex]

[tex]y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t^2[/tex]

and its velocity vector has components

[tex]v_x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t[/tex]

[tex]v_y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t[/tex]

After [tex]t=3.00\,\rm s[/tex], its position is

[tex]x=273\,\rm m[/tex]

[tex]y=362\,\rm m[/tex]

and the rocket's velocity vector has horizontal and vertical components

[tex]v_x=120\,\frac{\rm m}{\rm s}[/tex]

[tex]v_y=159\,\frac{\rm m}{\rm s}[/tex]

After the engine failure [tex](t>3.00\,\rm s)[/tex], the rocket is in freefall and its position is given by

[tex]x=273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)t[/tex]

[tex]y=362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2[/tex]

and its velocity vector's components are

[tex]v_x=120\,\frac{\rm m}{\rm s}[/tex]

[tex]v_y=159\,\frac{\rm m}{\rm s}-gt[/tex]

where we take [tex]g=9.80\,\frac{\rm m}{\mathrm s^2}[/tex].

a. The maximum altitude occurs at the point during which [tex]v_y=0[/tex]:

[tex]159\,\frac{\rm m}{\rm s}-gt=0\implies t=16.2\,\rm s[/tex]

At this point, the rocket has an altitude of

[tex]362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)(16.2\,\rm s)-\dfrac g2(16.2\,\rm s)^2=1650\,\rm m[/tex]

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve [tex]y=0[/tex] for [tex]t[/tex], then add 3 seconds to this time:

[tex]362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=34.6\,\rm s[/tex]

So the rocket stays in the air for a total of [tex]37.6\,\rm s[/tex].

c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute [tex]x[/tex] for this time [tex]t[/tex]:

[tex]273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)(34.6\,\rm s)=4410\,\rm m[/tex]

ACCESS MORE