Use Heron's formula to find the area in square yards of ABC

Answer:
see explanation
Step-by-step explanation:
Calculate the semi perimeter s
s = [tex]\frac{12+11+7}{2}[/tex] = [tex]\frac{30}{2}[/tex] = 15
Substitute s = 15 into the area formula
A = [tex]\sqrt{15(15-12)(15-11)(15-7)}[/tex]
= [tex]\sqrt{15(3)(4)(8)}[/tex]
= [tex]\sqrt{1440}[/tex] = 12[tex]\sqrt{10}[/tex]
Answer:
37.95 yd^2 (to the nearest hundredth).
Step-by-step explanation:
s = (7 + 11 + 12) / 2
= 30/2
= 15
Now plug in all the values:
Area = √ [s(s - a)(s - b)(s -c)]
= √ 15(15-7)(15-11)(15-12)
= √ 15*8*4*3
= √ 1440
= 37.95 yd^2.