1. The average rate of change of a function [tex]f(x)[/tex] over an interval [tex][a,b][/tex] is given by the difference quotient
[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]
Here,
[tex]\dfrac{f(2)-f(-3)}{2-(-3)}=\dfrac{8-(-2)}5=2[/tex]
2. Complete the square to rewrite the quadratic in vertex form:
[tex]x^2+10x-9=x^2+10x+25-34=(x+5)^2-34[/tex]
which indicates its vertex occurs at the point (-5, -34).
3. Check the discriminant. For a quadratic polynomial [tex]P_2(x)=ax^2+bx+c[/tex], the discriminant is
[tex]\Delta_{P_2}=b^2-4ac[/tex]
[tex]\implies\Delta=2^2-4(-8)(-7)=-220<0[/tex]
Because the discriminant is negative, there are two complex roots.
4. Same as before:
[tex]\Delta=8^2-4(6)(-3)=136[/tex]