Confused, I’d appreciate help!

The fundamental theorem of algebra says this cubic has three roots, so we could write it as
[tex]4x^3+32x^2+79x+60=4(x-a)(x-b)(x-c)[/tex]
We're told one of the roots is equal to the sum of the other two, so we could take [tex]c=a+b[/tex]:
[tex]4x^3+32x^2+79x+60=4(x-a)(x-b)(x-a-b)[/tex]
If we expand the right side, we get
[tex]4\bigg(x^3-2(a+b)x^2+(a^2+3ab+b^2)x-(a^2b+ab^2)\bigg)[/tex]
For two polynomial to be equal, the coefficients of terms of the same degree must match, so that
[tex]\begin{cases}4=4&(x^3)\\32=-8(a+b)&(x^2)\\79=4(a^2+3ab+b^2)&(x)\\60=-4(a^2b+ab^2)&\text{(constant)}\end{cases}[/tex]
Now we can find [tex]a,b,c[/tex].
[tex]32=-8(a+b)=-8c\implies c=-4[/tex]
This tells us that [tex]x+4[/tex] is a factor, so dividing the original cubic by this returns a remainder of 0.
[tex]\dfrac{4x^3+32x^2+79x+60}{x+4}=4x^2+16x+15=4\left(x+\dfrac32\right)\left(x+\dfrac52\right)[/tex]
which further tells us that [tex]a=-\dfrac32[/tex] and [tex]b=-\dfrac52[/tex].