Answer:
[tex]\large\boxed{GCF(14g^5h^2,\ 56g^3h^4,\ 77g^3h^2)=g^3h^2}[/tex]
Step-by-step explanation:
[tex]14g^5h^2=2\cdot7\cdot \boxed{g}\cdot \boxed{g}\cdot \boxed{g}\cdot g\cdot g\cdot \boxed{h}\cdot \boxed{h}\\\\56g^3h^4=2\cdot2\cdot2\cdot7\cdot\boxed{g}\cdot \boxed{g}\cdot \boxed{g}\cdot \boxed{h}\cdot \boxed{h}\cdot h\cdot h\\\\77g^3h^2=7\cdot11\cdot\boxed{g}\cdot \boxed{g}\cdot \boxed{g}\cdot \boxed{h}\cdot \boxed{h}\\\\GCF(14g^5h^2,\ 56g^3h^4,\ 77g^3h^2)=\boxed{g}\cdot \boxed{g}\cdot \boxed{g}\cdot \boxed{h}\cdot \boxed{h}=g^3h^2[/tex]