Respuesta :
Answer:
C. [tex]900 \%[/tex]
Step-by-step explanation:
The given function is
[tex]f(x)=10^x[/tex]
Substitute x=5 to get;
[tex]f(5)=10^5=100000[/tex]
Substitute x=6 to get;
[tex]f(5)=10^6=1000000[/tex]
The percentage increment of [tex]f(x)[/tex] over the interval from x=5 to x=6 is
[tex]=\frac{100000-100000}{10000}\times100 \%[/tex]
[tex]=\frac{900000}{10000}\times100 \%[/tex]
[tex]=9\times100 \%[/tex]
[tex]=900 \%[/tex]
Answer:
f(x) increases by 900%
Step-by-step explanation:
f(x) increases by 900%
f(5) = 105
f(6) = 106
f(6)
f(5)
=
106
105
= 106−5 = 10
Therefore, f(x) increases by a factor of 10 over the interval from x = 5 to x = 6.
Then,
A value increases by p% if it changes by a factor of 1 +
p
100
.
f(6) = 10f(5)
f(6) = (1 + 9)f(5)
f(6) = (1 +
900
100
)f(5)
f(6) = f(5) +
900
100
f(5)
f(6) = f(5) + 900% · f(5)
Thus, f(6) is 900% larger than f(5). So, f(x) increases by 900% over the interval from x = 5 to x = 6.